Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
J Hosp Infect ; 137: 44-53, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-20232613

RESUMEN

OBJECTIVES: In Tuscany, Italy, New Delhi metallo-beta-lactamase-producing carbapenem-resistant Enterobacterales (NDM-CRE) in hospitalized patients has increasingly been observed since 2018, leading in 2019 to the implementation of enhanced control measures successfully reducing transmission. We describe the NDM-CRE epidemiology during the COVID-19 pandemic in Tuscany. METHODS: Data on NDM-CRE patients hospitalized in five Tuscan hospitals were collected from January 2019 to December 2021. Weekly rates of NDM-CRE cases on hospital days in medical and critical-care wards were calculated. In March-December 2020, NDM-CRE rates were stratified by COVID-19 diagnosis. Multi-variate regression analysis was performed to assess outcomes' differences among two periods analysed and between COVID-19 populations. RESULTS: Since March 2020, an increase in NDM-CRE cases was observed, associated with COVID-19 admissions. COVID-19 patients differed significantly from non-COVID-19 ones by several variables, including patient features (age, Charlson index) and clinical history and outcomes (NDM-CRE infection/colonization, intensive care unit stay, length of stay, mortality). During the pandemic, we observed a higher rate of NDM-CRE cases per hospital day in both non-COVID-19 patients (273/100,000) and COVID-19 patients (370/100,00) when compared with pre-pandemic period cases (187/100,00). CONCLUSIONS: Our data suggest a resurgence in NDM-CRE spread among hospitalized patients in Tuscany during the COVID-19 pandemic, as well as a change in patients' case-mix. The observed increase in hospital transmission of NDM-CRE could be related to changes in infection prevention and control procedures, aimed mainly at COVID-19 management, leading to new challenges in hospital preparedness and crisis management planning.


Asunto(s)
COVID-19 , Gammaproteobacteria , Humanos , Pandemias , Prueba de COVID-19 , COVID-19/epidemiología , beta-Lactamasas , Hospitales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
2.
PLoS Pathog ; 19(2): e1011160, 2023 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2257001

RESUMEN

The development of COVID 19 vaccines as an effort to mitigate the outbreak, has saved millions of lives globally. However, vaccination breakthroughs have continuously challenged the vaccines' effectiveness and provided incentives to explore facets holding potential to alter vaccination-induced immunity and protection from subsequent infection, especially VOCs (Variants Of Concern). We explored the functional dynamics of nasopharyngeal transcriptionally active microbes (TAMs) between vaccination breakthroughs and unvaccinated SARS-CoV-2 infected individuals. Microbial taxonomic communities were differentially altered with skewed enrichment of bacterial class/genera of Firmicutes and Gammaproteobacteria with grossly reduced phylum Bacteroidetes in vaccination breakthrough individuals. The Bacillus genus was abundant in Firmicutes in vaccination breakthrough whereas Prevotella among Bacteroides dominated the unvaccinated. Also, Pseudomonas and Salmonella of Gammaproteobacteria were overrepresented in vaccination breakthrough, whilst unvaccinated showed presence of several genera, Achromobacter, Bordetella, Burkholderia, Neisseria, Hemophilus, Salmonella and Pseudomonas, belonging to Proteobacteria. At species level, the microbiota of vaccination breakthrough exhibited relatively higher abundance of unique commensals, in comparison to potential opportunistic microbes enrichment in unvaccinated patients' microbiota. Functional metabolic pathways like amino acid biosynthesis, sulphate assimilation, fatty acid and beta oxidation, associated with generation of SCFAs (short chain fatty acids), were enriched in vaccination breakthroughs. Majorly, metabolic pathways of LCFAs biosynthesis (long chain fatty acids; oleate, dodecenoate, palmitoleate, gondoate) were found associated with the unvaccinated. Our research highlights that vaccination decreases the microbial diversity in terms of depleting opportunistic pathogens and increasing the preponderance of commensals with respect to unvaccinated patients. Metabolic pathway analysis substantiates the shift in diversity to functionally modulate immune response generation, which may be related to mild clinical manifestations and faster recovery times during vaccination breakthroughs.


Asunto(s)
COVID-19 , Gammaproteobacteria , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2/genética , Vacunación , Bacteroidetes , Ácidos Grasos
3.
Microbiol Spectr ; 10(1): e0108021, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1673361

RESUMEN

The spread of carbapenem-resistant Pseudomonas aeruginosa and carbapenemase-producing Enterobacterales (CPE) has dramatically impacted morbidity and mortality. COVID-19 pandemic has favored the selection of these microorganisms because of the excessive and prolonged use of broad-spectrum antibiotics and the outbreaks related to patient transfer between hospitals and inadequate personal protective equipment. Therefore, early CPE detection is considered essential for their control. We aimed to compare conventional phenotypic synergy tests and two lateral flow immunoassays for detecting carbapenemases in Enterobacterales and P. aeruginosa. We analyzed 100 carbapenem-resistant Gram-negative bacilli isolates, 80 Enterobacterales, and 20 P. aeruginosa (86 isolates producing KPC, NDM, OXA-48, IMP, and VIM carbapenemases and 14 non-carbapenemase-producing isolates). We performed a modified Hodge test, boronic acid and ethylenediaminetetraacetic acid (EDTA) synergy tests, and two lateral flow immunoassays: RESIST-4 O.K.N.V. (Coris Bioconcept) and NG Test Carba 5 (NG Biotech). In total, 76 KPC, seven VIM, one NDM, one OXA-48, and one isolate coproducing KPC + NDM enzymes were included. The concordance of different methods estimated by the Kappa index was 0.432 (standard error: 0.117), thus showing a high variability with the synergy tests with boronic acid and EDTA and reporting 16 false negatives that were detected by the two immunochromatographic methods. Co-production was only detected using immunoassays. Conventional phenotypic synergy tests with boronic acid and EDTA for detecting carbapenemases are suboptimal, and their routine use should be reconsidered. These tests depend on the degree of enzyme expression and the distance between disks. Lateral flow immunoassay tests are a rapid and cost-effective tool to detect and differentiate carbapenemases, improving clinical outcomes through targeted therapy and promoting infection prevention measures. IMPORTANCE Infections due to multidrug-resistant pathogens are a growing problem worldwide. The production of carbapenemases in Pseudomonas aeruginosa and Enterobacterales cause a high impact on the mortality of infected patients. Therefore, it is of great importance to have methods that allow the early detection of these multi-resistant microorganisms, achieving the confirmation of the type of carbapenemase present, with high sensitivity and specificity, with the aim of improving epidemiological control, dissemination, the clinical course to through targeted antibiotic therapy and promoting infection control in hospitals.


Asunto(s)
Gammaproteobacteria/enzimología , Inmunoensayo/métodos , Pseudomonas aeruginosa/enzimología , Carbapenémicos/metabolismo , Carbapenémicos/farmacología , Ligasas de Carbono-Nitrógeno/metabolismo , Resistencia a Medicamentos , Inmunoensayo/normas , Fenotipo , Pseudomonas aeruginosa/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA